K-Fold symmetric starlike univalent functions
نویسندگان
چکیده
منابع مشابه
Coefficient Estimates for a New Subclasses of m-fold Symmetric Bi-Univalent Functions
The purpose of the present paper is to introduce two new subclasses of the function class ∑m of bi-univalent functions which both f and f-1 are m-fold symmetric analytic functions. Furthermore, we obtain estimates on the initial coefficients for functions in each of these new subclasses. Also we explain the relation between our results with earlier known results.
متن کاملGenerating Starlike and Convex Univalent Functions
Alexander [1] was the first to introduce certain subclasses of univalent functions examining the geometric properties of the image f(D) of D under f . The convex functions are those that map D onto a convex set. A function w = f(z) is said to be starlike if, together with any of its points w, the image f(D) contains the entire segment {tw : 0 ≤ t ≤ 1}. Thus we introduce the denotations S = {f ∈...
متن کاملStarlike Functions of order α With Respect To 2(j,k)-Symmetric Conjugate Points
In this paper, we introduced and investigated starlike and convex functions of order α with respect to 2(j,k)-symmetric conjugate points and coefficient inequality for function belonging to these classes are provided . Also we obtain some convolution condition for functions belonging to this class.
متن کاملHoradam Polynomials Estimates for $lambda$-Pseudo-Starlike Bi-Univalent Functions
In the present investigation, we use the Horadam Polynomials to establish upper bounds for the second and third coefficients of functions belongs to a new subclass of analytic and $lambda$-pseudo-starlike bi-univalent functions defined in the open unit disk $U$. Also, we discuss Fekete-Szeg$ddot{o}$ problem for functions belongs to this subclass.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1985
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700002537